

### The Earth Explorer 8 FLEX mission for the retrieval of the full fluorescence signal to estimate photosynthetic

activity of terrestrial vegetation

\*Jochem Verrelst **Image Processing Laboratory University of Valencia, Spain** jochem.verrelst@uv.es



J. Verrelst\*, C. v.d. Tol, F. Magnani, N. Sabater, J.P. Rivera, G. Mohammed and J. Moreno Image Processing Laboratory (IPL), University of Valencia, Spain

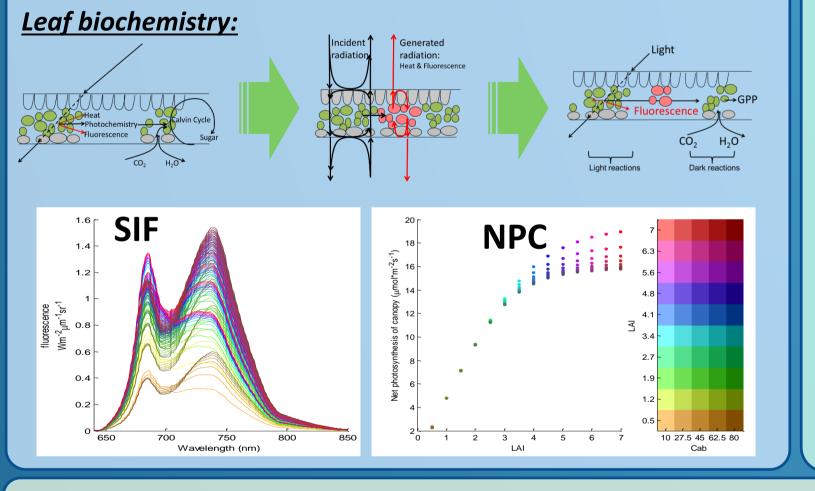
#### 1. Introduction

In preparation for ESA's Earth Explorer 8 candidate mission FLEX, a Photosynthesis Study (PS) has been completed that aimed to quantitatively link sun-induced fluorescence (SIF) to photosynthesis based on model and experimental data. One of the objectives of the PS was to develop a prototype inversion algorithm to retrieve photosynthesis from simulated SIF observations. The SCOPE model has been selected as baseline model, because it has the ability to simulate the effects of irradiance, vegetation structure and physiology on SIF and photosynthesis.

In this study, the targeted flux is "Net photosynthesis of the canopy" (NPC), which is important for carbon cycle and climate change research. In order to enable estimation of NPC from SIF data, a regression analysis been pursued. This approach enables the use of simulated SIF data in retrieval of NPC for a multitude of theoretical canopy configurations. Because SCOPE is a complex model that consists of over 30 input variables, a first step is to identify the key variables that drive canopy-leaving SIF. Therefore, we had the following objectives:

- To apply a global sensitivity analysis (GSA) that quantifies the relative importance of SCOPE input variables to SIF
- To assess the predictive power of SIF wavelengths to estimate NPC, i.e.:
  - (1) linear regression analysis between individual SIF bands and NPC outputs.
  - (2) Linear and nonlinear regression analysis between combined SIF bands and NPC outputs.

#### 6. Conclusions


A SCOPE modelling study was conducted to examine how successfully canopy-leaving SIF can estimate net photosynthesis of the canopy (NPC). Based on identified key variables multiple canopy configurations were simulated. Regression analyses between SIF retrievals and NPC values led to the following general findings:

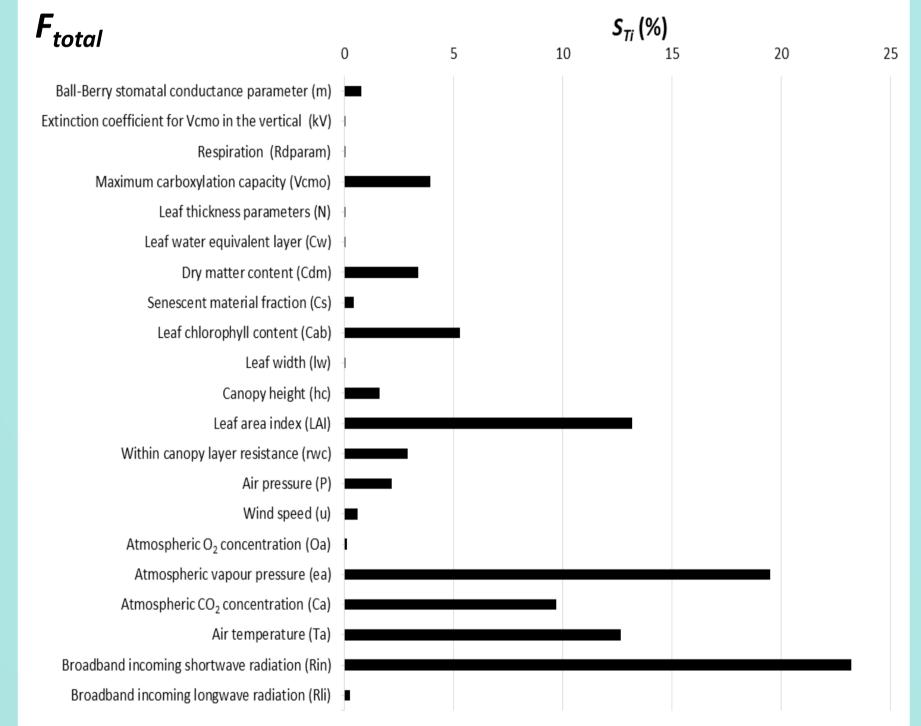
- 1. The most sensitive SIF bands to NPC were located around the first (i.e. red) emission peak for heterogeneous canopy configurations.
- 2. Combining two SIF retrieval bands (e.g.,  $O_2$ -B and  $O_2$ -A) led to stronger correlations than using only one SIF band.
- 3. Using the  $O_2$ -B and  $O_2$ -A bands produced similar or superior performances than using the two emission peaks, while using the peak ratio produced poorer relationships than when both bands were individually entered into the regression model.
- 4. Even stronger correlations were achieved using four main SIF retrieval bands ( $H\alpha$ ,  $O_2$ -B, water vapour,  $O_2$ -A).
- 5. Nonlinear regression produced stronger relationships than did linear approaches.

It is recommended to sample the SIF signal in at least the O<sub>2</sub>-B and O<sub>2</sub>-A bands in order to enable robust quantification of canopy photosynthetic activity.

## 2. SCOPE Soil-Canopy-Observation Energy fluxes: SCOPE Fluorescence, reflectance, GPP, Energy fluxes

**SCOPE** is a vertical (1-D) integrated radiative transfer and energy balance SVAT model, with, amongst others, sun-induced chlorophyll fluorescence (SIF) and net photosynthesis of the canopy (NPC) as outputs.




#### 3. Global sensitivity analysis (GSA)

In variance-based GSA methods the output variance is decomposed to the sum of contributions of each individual input parameter and the interactions (coupling terms) between different parameters.

Based on the pioneering work of Sobol the variance-based sensitivity measures are represented as follows:  $1 = \sum S_i + \sum \sum S_{ij} + \dots + S_{12,...,k}$ 

In this equation,  $S_i$ ,  $S_{ji}$ ,..., $S_{12,...,k}$  are the so-called **Sobol's global sensitivity indices**. The total effect sensitivity index S<sub>Ti</sub> measures the whole effect of the variable Xi, i.e. the first order effect as well as its coupling terms with the other input variables.

The  $S_{Ti}$  over SCOPE's output  $F_{total}$  (Integrated SIF from 640 to 850 nm) was calculated to identify the driving input variables. The driving variables were: Vcmo, Cdm, Cab, LAI, hc, rwc, P, ea, Ca, Ta, Rin. Altogether these variables explained 97.5% of the total variance (taking interactions into account).

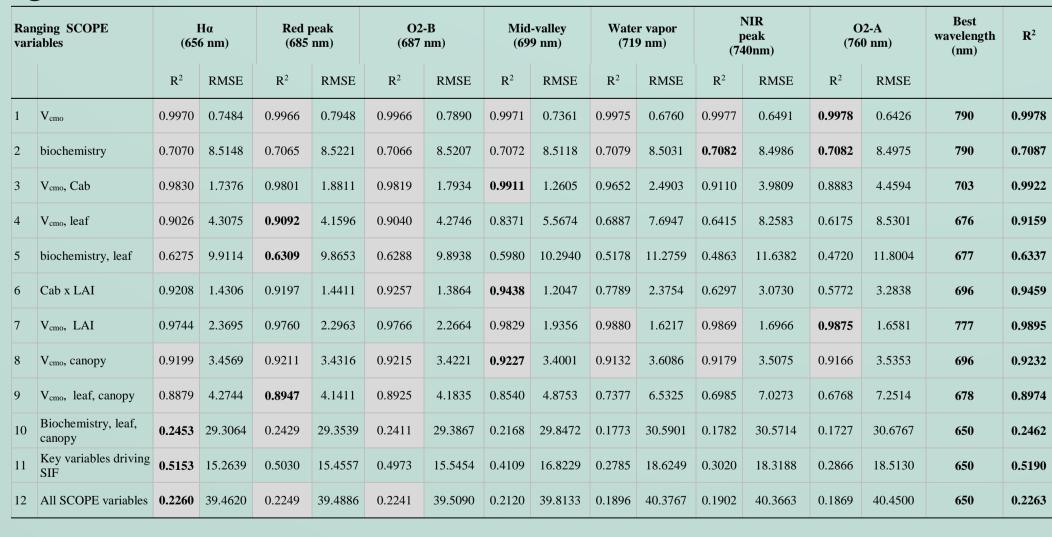


#### 4. Experimental setup

12 Canopy configurations simulated with increasing heterogeneity. Variables were uniform randomly sampled between model boundaries.

| Ind | ex variable                                                               | HISTORICATION                                                                                                                                                                                       | # Simulations |
|-----|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Bio | chemistry                                                                 |                                                                                                                                                                                                     |               |
| 1   | $V_{cmo}$                                                                 | Vcmo is the main biochemical driver of photosynthesis. Hence, this is the theoretical baseline when SIF is not influenced by any other variable.                                                    | 2000          |
| 2   | Biochemistry                                                              | All biochemical variables ( $V_{cmo}$ , m, Rdparam, kV). Represents the most heterogeneous situation at the biochemical scale.                                                                      | 2000          |
| Bio | chemistry, le                                                             | $\operatorname{af}$                                                                                                                                                                                 |               |
| 3   | V <sub>cmo</sub> , Cab                                                    | Driving biochemical and leaf variables.                                                                                                                                                             | 2000          |
| 4   | V <sub>cmo</sub> , leaf                                                   | Driving biochemical variable and all leaf variables (N, Cw, Cdm, Cs, Cab).                                                                                                                          | 2000          |
| 5   | Biochemistry<br>leaf                                                      | All biochemical and leaf variables. Represents the most heterogeneous situation at biochemical and leaf scales ( $V_{cmo}$ , m, Rdparam, kV, N, Cw, Cdm, Cs, Cab).                                  | 2000          |
| Bio | chemistry, le                                                             | af , canopy                                                                                                                                                                                         |               |
| 6   | Cab, LAI                                                                  | Driving leaf and canopy variables.                                                                                                                                                                  | 2000          |
| 7   | $V_{cmo}$ , LAI                                                           | Driving biochemical variable ( $V_{cmo}$ ) with driving canopy variable (LAI)                                                                                                                       | 2000          |
| 8   | V <sub>cmo</sub> , canopy                                                 | Driving biochemical variable (V <sub>cmo</sub> ) with all varying canopy variables (LAI, lw, hc).                                                                                                   | 2000          |
| 9   | V <sub>cmo</sub> , N, Cw,<br>Cdm, Cs, Cal<br>LAI, hw, hc<br>(spherical LI | Cab, LAI, lw, hc).                                                                                                                                                                                  | 2000          |
| 10  | Biochemistry leaf, canopy                                                 | Al biochemical, leaf and canopy variables ( $V_{cmo}$ , m, Rdparam, kV, N, Cw, Cdm, Cs, Cab, LAI, lw, hc). Represents the most heterogeneous situation at the canopy scale                          | 2000          |
| All | biochemistry                                                              | , leaf , canopy, geometry, micrometeorology                                                                                                                                                         |               |
| 11  | Key SCOPE<br>variables driv<br>SIF                                        | $V_{cmo}$ , Cdm, Cab, LAI, hc, rwc, P, ea, Ca, Ta, Rin. These variables and their interactions explain 97.5% of the variability in $F_{total}$ .                                                    | 2000          |
| 12  | All SCOPE variables                                                       | All SCOPE variables (V <sub>cmo</sub> , m, Rdparam, kV, N, Cw, Cdm, Cs, Cab, LAI, lw, hc, VZA, RAA, SZA, rwc, rb, P, u, Oa, ea, Ca, Ta, Rin, Rli). Represents the most heterogeneous configuration. | 2000          |
|     |                                                                           |                                                                                                                                                                                                     |               |

Regression analysis: Linear regression (LR) & nonlinear Gaussian processes regression (GPR)


- 50 % used for training
- 50 % used for validation. R<sup>2</sup> and RMSE calculated.

#### 5. Results: Single & combined band analysis

Both the most important SIF retrieval bands and each single SIF band (1 nm) and combined bands were analyzed on their predictive power to estimate NPC using linear regression.

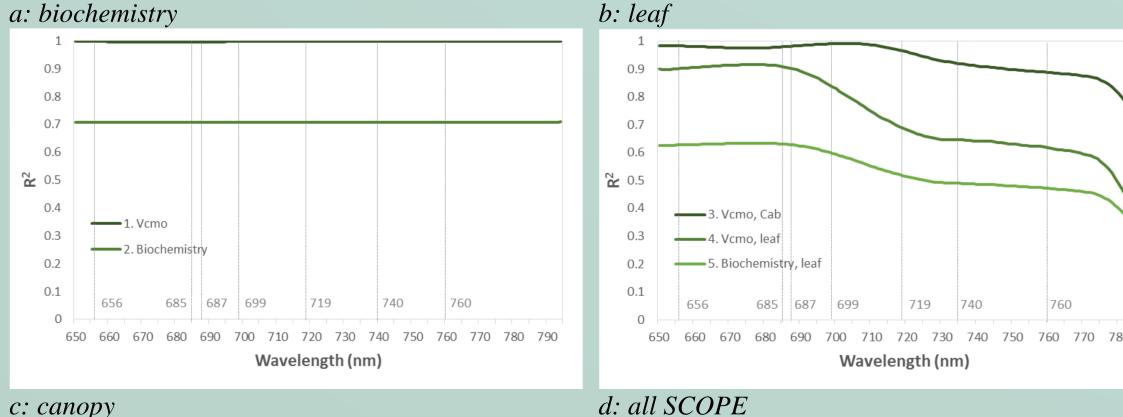
# **Most important SIF retrieval bands:**

-10. Biochemistry, leaf, canopy



12 All SCOPE variables

Overall, the red peak,  $O_2$ -B, and  $H\alpha$  line show similar predictive strength. The NIR peak and  $O_2$ -A are also similar in performance. In most instances the red peak or O<sub>2</sub>-B band are better predictors than the NIR peak or O<sub>2</sub>-A. In realistic canopy scenarios (i.e. with ranging variables at scales of biochemistry, leaf and canopy; scenario 11) the best performing wavelength is situated on the slope before the first peak.


#### **Combined bands into linear and nonlinear regression:**

| Index | Combined wavelengths                                            | Wavelengths (nm)                                 |
|-------|-----------------------------------------------------------------|--------------------------------------------------|
| 1     | O <sub>2</sub> -B and O <sub>2</sub> -A absorption lines        | 687, 760                                         |
| 2     | $H\alpha$ , $O_2$ -B, $O_2$ -A and water vapor absorption lines | 656, 687, 719, 760                               |
| 3     | Two SIF emission peaks                                          | 685, 740                                         |
| 4     | Peak ratio                                                      | 685/740                                          |
| 5     | Two SIF emission peaks and mid-valley                           | 685, 699, 740                                    |
| 6     | F <sub>total</sub>                                              | Integrated SIF (from 640 to 850nm)               |
| 7     | F <sub>all</sub>                                                | All individual SIF wavelengths (from 650 to 790) |

Validation results combined bands linear regression

| Ranging SCOPE variables |                                 | O <sub>2</sub> -B, O <sub>2</sub> -A:<br>687, 760 nm |         | Hα, O <sub>2</sub> -B, water<br>vapor, O <sub>2</sub> -A:<br>656, 687, 719,<br>760 nm |         | Two peaks: 685, 740 nm |         | Peak ratio:<br>685/740 |         | Two peaks and valley: 685, 699, 740 nm |         | F <sub>total</sub> : Integrated SIF (from 640 to 850nm) |         | F <sub>all</sub> : All individual SIF wavelengths (from 650 to 790) |         |
|-------------------------|---------------------------------|------------------------------------------------------|---------|---------------------------------------------------------------------------------------|---------|------------------------|---------|------------------------|---------|----------------------------------------|---------|---------------------------------------------------------|---------|---------------------------------------------------------------------|---------|
|                         |                                 | $\mathbb{R}^2$                                       | RMSE    | $\mathbb{R}^2$                                                                        | RMSE    | $\mathbb{R}^2$         | RMSE    | R <sup>2</sup>         | RMSE    | $\mathbb{R}^2$                         | RMSE    | $\mathbb{R}^2$                                          | RMSE    | R <sup>2</sup>                                                      | RMSE    |
| 1                       | $V_{ m cmo}$                    | 1                                                    | 0.0040  | 1                                                                                     | 0.0053  | 1                      | 0.0038  | 0.9900                 | 1.4283  | 1                                      | 0.0039  | 1                                                       | 0.0089  | 1                                                                   | 0.0028  |
| 2                       | biochemistry                    | 0.7863                                               | 7.0925  | 0.7901                                                                                | 6.9813  | 0.7332                 | 7.8987  | 0.7181                 | 8.2289  | 0.7389                                 | 8.1721  | 0.7268                                                  | 35.8424 | 0.7996                                                              | 6.7456  |
| 3                       | V <sub>cmo</sub> , Cab          | 0.9996                                               | 0.2598  | 0.9998                                                                                | 0.1948  | 0.9996                 | 0.2548  | 0.6668                 | 7.6360  | 0.9987                                 | 0.4841  | 0.9905                                                  | 1.3127  | 1                                                                   | 0.0811  |
| 4                       | V <sub>cmo</sub> , leaf         | 0.9695                                               | 2.3618  | 0.9883                                                                                | 1.4783  | 0.9739                 | 2.1710  | 0.6382                 | 8.0869  | 0.9830                                 | 1.7833  | 0.6934                                                  | 7.5117  | 0.9899                                                              | 1.3645  |
| 5                       | biochemistry, leaf              | 0.6797                                               | 9.2628  | 0.6640                                                                                | 9.2910  | 0.6833                 | 9.0908  | 0.5779                 | 10.5707 | 0.6777                                 | 9.1064  | 0.5459                                                  | 10.6994 | 0.7633                                                              | 7.9247  |
| 6                       | Cab x LAI                       | 1                                                    | 0.0101  | 0.9919                                                                                | 0.4640  | 1                      | 0.0066  | 0.4044                 | 3.8472  | 0.9879                                 | 0.5552  | 0.9589                                                  | 1.7122  | 1                                                                   | 0.0040  |
| 7                       | V <sub>cmo</sub> , LAI          | 0.9967                                               | 0.8520  | 0.9988                                                                                | 0.5203  | 0.9993                 | 0.3837  | 0.8926                 | 4.8546  | 0.9791                                 | 2.1539  | 0.9945                                                  | 1.1048  | 1                                                                   | 0.0070  |
| 8                       | V <sub>cmo</sub> , canopy       | 0.9456                                               | 2.9284  | 0.9431                                                                                | 2.9300  | 0.9447                 | 2.9073  | 0.8274                 | 5.2367  | 0.9397                                 | 3.0608  | 0.9416                                                  | 3.0289  | 0.9945                                                              | 0.9428  |
| 9                       | V <sub>cmo</sub> , leaf, canopy | 0.9164                                               | 3.7109  | 0.9174                                                                                | 3.7290  | 0.9177                 | 3.7213  | 0.5272                 | 8.9396  | 0.8982                                 | 4.1313  | 0.7250                                                  | 6.7224  | 0.9401                                                              | 3.1440  |
| 10                      | Biochemistry, leaf, canopy      | 0.3180                                               | 27.7851 | 0.3573                                                                                | 27.6869 | 0.3392                 | 30.4935 | 0.1938                 | 33.3582 | 0.3280                                 | 27.6240 | 0.1935                                                  | 31.0465 | 0.3819                                                              | 28.0068 |
| 11                      | Key variables driving SIF       | 0.5881                                               | 12.1416 | 0.6610                                                                                | 10.9384 | 0.6000                 | 11.2757 | 0.3184                 | 15.4214 | 0.5374                                 | 13.0736 | 0.4053                                                  | 14.7770 | 0.6411                                                              | 11.7772 |
| 12                      | All SCOPE variables             | 0.3131                                               | 37.2426 | 0.2676                                                                                | 41.4844 | 0.3204                 | 35.4161 | 0.1350                 | 43.8470 | 0.2870                                 | 38.1309 | 0.2292                                                  | 39.3470 | 0.2873                                                              | 42.9957 |

NIR peak was used.



- d: all SCOPE 12. All SCOPE variables
- 0.4
- Combining the O<sub>2</sub>-A and O<sub>2</sub>-B bands or the red and NIR peaks produced stronger relationships with NPC than were obtained when the single O<sub>2</sub>-A band or the
- The combination of O<sub>2</sub>-B and O<sub>2</sub>-A bands produced similar results as combining the two peaks. Hence, these two combinations could be considered essentially
- equivalent from this analysis. In all cases, the peak ratio  $(F_{685}/F_{740})$  produced considerably poorer correlations than using the two bands individually. Combining the mid-valley with the two
- peaks produced only marginal improvements over the combined peaks. Also small improvements were obtained when combining SIF retrievals at the four absorption lines (H $\alpha$ , O<sub>2</sub>-B, water vapor, O<sub>2</sub>-A). The F<sub>total</sub> (integrated SIF)
- generally did not yield a predictive advantage and in several instances produced weaker correlations than other features. Conversely, further improvements are achieved for most of the scenarios when including all individual wavelengths into the regression analysis, but gains in

#### explained NPC variance are modest. Validation results combined bands nonlinear Gaussian processes regression (GPR)

0.2234 41.6271 0.2112 45.0060 **0.2446** 40.2953 0.1260 41.4454 0.2091 41.6138 0.2278 35.7368 0.2275 40.8113

| Ranging SCOPE variables |                                 | O <sub>2</sub> -B, O <sub>2</sub> -A: vapor, O <sub>2</sub> -A: 687, 760 nm 656, 687, 719, 760 nm |         |                | Two peaks: |                | Peak ratio: 685/740 |                | Two peaks and valley: 685, 699, 740 nm |                | F <sub>total</sub> : Integrated SIF (from 640 to 850nm) |                | F <sub>all</sub> : All individual SII wavelengths (from 650 to 790) |                |         |
|-------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|---------|----------------|------------|----------------|---------------------|----------------|----------------------------------------|----------------|---------------------------------------------------------|----------------|---------------------------------------------------------------------|----------------|---------|
|                         |                                 | $\mathbb{R}^2$                                                                                    | RMSE    | $\mathbb{R}^2$ | RMSE       | $\mathbb{R}^2$ | RMSE                | $\mathbb{R}^2$ | RMSE                                   | $\mathbb{R}^2$ | RMSE                                                    | $\mathbb{R}^2$ | RMSE                                                                | $\mathbb{R}^2$ | RMSE    |
| 1                       | V <sub>cmo</sub>                | 0.9965                                                                                            | 0.8255  | 0.9970         | 0.7412     | 0.9965         | 0.7869              | 0.8686         | 4.9370                                 | 0.9966         | 0.7831                                                  | 0.9983         | 0.5665                                                              | 1              | 0.0843  |
| 2                       | biochemistry                    | 0.7234                                                                                            | 8.0229  | 0.7111         | 8.1849     | 0.7195         | 8.1690              | 0.5874         | 9.8065                                 | 0.7141         | 8.3908                                                  | 0.7201         | 8.2419                                                              | 0.7011         | 8.4288  |
| 3                       | V <sub>cmo</sub> , Cab          | 0.9965                                                                                            | 0.7792  | 0.9982         | 0.5657     | 0.9963         | 0.8123              | 0.4721         | 9.6652                                 | 0.9966         | 0.7816                                                  | 0.9900         | 1.3493                                                              | 0.9991         | 0.4056  |
| 4                       | Vcmo, leaf                      | 0.9333                                                                                            | 3.5056  | 0.9462         | 3.0807     | 0.9305         | 3.6105              | 0.3062         | 11.1958                                | 0.9573         | 2.8784                                                  | 0.6467         | 8.0626                                                              | 0.9783         | 2.0221  |
| 5                       | biochemistry, leaf              | 0.6356                                                                                            | 9.7534  | 0.6205         | 10.2080    | 0.6337         | 9.8866              | 0.4056         | 12.3210                                | 0.6423         | 9.3908                                                  | 0.5176         | 10.9974                                                             | 0.6828         | 8.9835  |
| 6                       | Cab x LAI                       | 0.9529                                                                                            | 1.1083  | 0.9354         | 1.2673     | 0.9547         | 1.0751              | 0.1955         | 4.5583                                 | 0.9434         | 1.2164                                                  | 0.9426         | 2.0248                                                              | 0.9728         | 0.8098  |
| 7                       | V <sub>cmo</sub> , LAI          | 0.9907                                                                                            | 1.4723  | 0.9853         | 1.7952     | 0.9898         | 1.5035              | 0.7240         | 7.7957                                 | 0.9770         | 2.2615                                                  | 0.9923         | 1.3046                                                              | 0.9968         | 0.8415  |
| 8                       | V <sub>cmo</sub> , canopy       | 0.9315                                                                                            | 3.2390  | 0.9333         | 3.2096     | 0.9321         | 3.2583              | 0.6404         | 7.3998                                 | 0.9244         | 3.4306                                                  | 0.9105         | 3.7510                                                              | 0.9490         | 2.8608  |
| 9                       | V <sub>cmo</sub> , leaf, canopy | 0.8950                                                                                            | 4.1334  | 0.9023         | 4.0438     | 0.9077         | 3.9263              | 0.3495         | 10.2994                                | 0.8982         | 4.1313                                                  | 0.7157         | 6.8358                                                              | 0.9169         | 3.7433  |
| 10                      | Biochemistry, leaf, canopy      | 0.2356                                                                                            | 31.8478 | 0.2388         | 30.8678    | 0.2348         | 30.8049             | 0.1152         | 33.2900                                | 0.2144         | 30.2922                                                 | 0.1292         | 32.3184                                                             | 0.2805         | 30.4726 |
| 11                      | Key variables driving SIF       | 0.4581                                                                                            | 13.7917 | 0.5068         | 13.6618    | 0.5342         | 12.5735             | 0.2484         | 15.8487                                | 0.5407         | 12.6540                                                 | 0.3078         | 16.1429                                                             | 0.5693         | 12.4038 |

• The nonlinear GPR produced stronger relationships with NPC in the majority of cases as opposed to linear regression, although

improvements were generally modest.

- Considering the best two-band combinations (i.e. the two peaks or the  $O_2$ -A and  $O_2$ -B),  $R^2$  values were higher in scenarios 2, 4-6, and 8-12.
- The strongest improvements were under conditions of increasing canopy and environmental heterogeneity. Again, including all individual wavelengths into the regression analysis led to strongest relationships for the majority of the scenarios, although improvements as opposed to using the SIF absorption bands were generally modest.
- From a pragmatic perspective, by using an adaptive, nonlinear regression method and retrieving SIF in the two deepest absorption lines could be sufficient to derive NPC with sufficient accuracy.