

Demonstrating the Potential of ALOS PALSAR Backscatter and INSAR Coherence for Forest Growing Stock Volume Estimation in Central Siberia

Christian J. Thiel & Christiane Schmullius

http://www.eo.uni-jena.de

SUMMARY OF RESULTS

- Coherence at frozen conditions offers the largest potential for GSV estimation: Saturation at 230 m³/ha, R² between coherence and GSV is 0.58 (Comparable to ERS-1/2 Tandem)
- Backscatter: Saturation at 75-100 m³/ha, R² backscatter vs. GSV 0.42 (HH) 0.48 (HV)
- Combination of backscatter and coherence led to improvement of GSV estimation, in particular exclusion of areas with contradictory GSV (coherence vs. backscatter) helpful
- Potential of ALOS PALSAR to map the GSV of the Siberian forest with a precision close to the accuracy
 of the conventional forest inventory data (relative RMSE approx. 25%)
- Data availability Siberia: In average 4 coherence images (Bt 46 days) acquired at frozen conditions and 6 FBD backscatter images acquired at unfrozen conditions

STUDY AREA

Central Siberia: Middle Siberian Plateau in the southern part of the territory is characterised by hills up to 1,700 m. Northern part is flat with elevations up to 500 m. Boreal forests.

FOREST INVETORY DATA

Ministerial forest inventory data: Many parameters, including the average GSV per forest stand.

METEOROLOGICAL DATA

Typical weather conditions observed: Temperatures far below freezing point during winter and above 0°C during summer. Only little precipitation.

ocation	Chunsky N	Chunsky E	Primorsky	Bolshe	Shesta.	Nizhne	Irbeisky	Hrebt.
006		30 Dec		28 Dec				
007	20 Jun	14 Feb	18 Jan	12 Feb	13 Jan	11 Jan	10 Aug	6 Jan
	5 Aug	2 Jul	5 Mar	15 Aug	28 Feb	26 Feb	10 Nov	21 Feb
	20 Sep	17 Aug	21 Jul	30 Sep	16 Jul	14 Jul	26 Dec	9 Jul
	5 Nov	2 Oct	5 Sep	31 Dec	31 Aug	14 Oct	_	24 Aug
	21 Dec	17 Nov	21 Oct		16 Oct			9 Oct
008	5 Feb	2 Jan	21 Jan	15 Feb	16 Jan	29 Feb	10 Feb	9 Jan
	22 Mar	17 Feb		2 Jul	2 Mar	16 Jul	27 Jun	24 Feb
	7 May	4 Jul		17 Aug	17 Apr	31 Aug	12 Aug	11 Jul
	22 Jun	19 Aug	_	_	18 Jul	_	28 Dec	26 Aug
	7 Aug				2 Sep		_	
009		4 Jan		2 Jan	18 Jan	16 Jan	12 Feb	11 Jan
		19 Feb	_	17 Feb	5 Mar	3 Mar	30 Jun	26 Feb
					21 Jul		15 Aug	14 Jul
		_			5 Sep		30 Sep	29 Aug
					21 Oct			14 Oct

PALSAR data: *Italics: unfrozen;* **Bold: FBD** (Fine Beam Dual); Other: FBS (Fine Beam Single) & frozen

DELINEATION OF GSV MAPS

- 1. Random training data selection (20% of inventory data)
- 2. Training of empirical exponential model
- 3. Pixel based model inversion
- 4. Averaging intermediate *GSV* maps resulting in one backscatter based and in one coherence based *GSV* map
- 5. Merging coherence and backscatter based GSV map
- 6. Elimination of pixels with a GSV difference > $100 \text{ m}^3/\text{ha}$
- 7. Setting all negative *GSV* values to zero
- 8. Assessing accuracy using remaining 80% of inventory

data

ulsj		

ACCURACY OF GSV MAPS DEPENDING ON USED DATA										
	Chunsky E	Chunsky N	Shesta	Hrebt S	Nishni					
R ² coh + int	0.79	0.79	0.54	0.57	0.83					
R² coh	0.80	0.78	0.37	0.55	0.82					
R² int	0.67	0.70	0.56	0.50	0.82					
RMSE [m³/ha] coh + int	56.6	41.2	50.4	57.4	48.9					
RMSE [m³/ha] coh	56.4	42.4	52.7	61.9	50.7					
RMSE [m³/ha] int	71.1	50.3	56.2	59.1	56.1					

Corrected relative RMSE approximately 25% for all sites

C. THIEL & C. SCHMULLIUS (2016): The potential of ALOS PALSAR backscatter and InSAR coherence for forest growing stock volume estimation in Central Siberia images.-In: Remote Sensing of Environment 173, pp. 258-273.

Friedrich-Schiller-University Jena, Department of Earth Observation
 Grietgasse 6, 07743 Jena, Germany
 Christian.Thiel@uni-jena.de, +49 3641 94 88 75
 C.Schmullius@uni-jena.de

